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1 INTRODUCTION

This report details the development of a simplified average model (AVM) for an MMC at CAPS.
The AVM can emulate the steady state and transient behaviors seen in experimental results. The
purpose of the model is to achieve less complexity and faster time domain simulation studies of
the MMCs at CAPS, while still maintaining sufficient converter dynamic accuracy. The method
utilized applies equivalent circuit models of the power stage and the duty-cycle generation circuitry
to describe the low frequency behavior of switching model (SWM) systems.

Unlike the conventional white box method to build up the AVM with all the control information
available, an impedance shaping method was used. The idea of the impedance shaping method is
to build the AVM from a black box, with only the measured impedance results. The method
in this report is much simpler than the conventional one, without exposing the internal control
information. The control algorithm and control methods are modeled based on the impedance
shaping results. The saturation limitations in the controller are designed based on the system
transient.

In Section 2, a MMC SWM model is compared with a AVM model, with the same reference,
identical control loops and system parameters. The step response and the short circuit transient
are well matched between two models and validated that AVM is able to represent the SWM of
the MMC. In Section 3, MMC current control loop and voltage control loop is presented. AVM is
designed by impedance shaping based on the MMC measured impedance from [1]. In Section 4,
the time domain transient results from the AVM are compared with the CHIL test results, including
the current step, voltage step, and the short circuit operation. The verification and validation is
implemented at different operation conditions.

2 MMC SWITCHING MODEL SIMPLIFIED BY AVERAGE MODEL

As shown in Fig. 1, a SWM and a AVM for MMC were built in Matlab/Simulink. For both models,
the same ac and dc references, control loops and parameters are utilized. The input for the models
are the dc reference voltage d and the ac reference voltage m. The MMC dc-link voltage equation
is given by (1) and ac output voltage by (2), where N is the number of cells, ω0 is the fundamental
frequency and θ0 is the phase angle. The outputs of the models are the dc voltage vdc, dc current
idc, and the ac current iac.

vdc = 2dNVcell (1)

vac = 2mNVcell,m = cos(ω0t+ θ0) (2)

With identical d, m inputs and controls, if the output waveforms of SWM and AVM match,
then the SWM can be simplified by AVM. With a AVM, the switching operations at the power
stage can be neglected and the circuit can be simulated much faster.
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Fig. 1: MMC SWM and AVM with the same references, identical control loop and parameters.

2.1 Switching model introduction
The SWM was built based on the MMC available at CAPS [2], which have a similar structure as
the model shown in Fig. 2. They are built with six arms, each arm consisting of six full-bridge
cells in series. A coupled inductor is connected in each phase to reduce the dc ripple. Carried
based phase shifted pulse width modulation is applied. The ac and dc voltage waveforms contain
the switching frequency information.

2.2 Average model introduction
The ac loop and the dc loop are modeled separately in the AVM, as shown in Fig. 3. The dc loop is
fully decoupled from the ac loop in this model. The ac loop contains controllable ac voltage source,
ac inductors, and the ac grid. The dc loop contains controllable dc voltage source, dc inductors,
and a resistive load. Switching related components are not utilized.

2.3 Simulation results comparison between SWM and AVM
For this simulation, both models are running with ac and dc closed-loop current control and the
voltage loop is disabled. The ac side is connected to the grid and the dc side is connected to a
resistive load. The MMC parameters are listed in Table 1.
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Fig. 2: MMC switching model.

Fig. 3: MMC average model.
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Table 1: MMC parameters

Parameter Value
Power rating 1.25 MW
DC voltage base 6 kV
DC current base 208 A
AC phase voltage amplitude 2.69 kV
AC current amplitude 309 A
Cells per arm 6
Switching freq. 2 kHz
DC Inductance: 2.5 mH
AC Inductance: 0.75 mH
Grid Inductance: 1.4 mH (0.05 p.u.)
DC load resistance 28.8 Ω
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A 40 ms operation sequence is implemented in both models for comparison. At 10 ms, idc ref

steps from 0 A to 200 A. At 20 ms, dc P-N short circuit is applied and then cleared at 25 ms.
At 30 ms, idc ref steps from 0 A to 309 A. The total clock time for the SWM is about 80.1 s to
execute 0.04s simulation time while AVM executes the run in only only 0.9 s clock time. From
the simulation results in Fig. 4, SWM and SVM show consistent waveforms which validate the
AVM built described in this report. The AVM is able to represent similar behavior to that of the
SWM while reducing the complexity and significantly improving simulation time associated with
the SWM.

Fig. 4: MMC SWM and AVM simulation results comparison.

3 AVERAGE MODELING BY IMPEDANCE SHAPING

3.1 MMC back to back tests
The AVM in this report is also tested in a back-to-back configuration, similar to past experimental
tests conducted with the MMCs at CAPS. As shown in Fig. 5, two MMCs are in a back-to-back
parallel connection. MMC1 is in a voltage control mode operation and establishes the voltage to
the system acting as the source. MMC2 is in current control mode operation and acts as a constant
current load. Connected at each MMC’s dc-link, there is a RC filter where 5 Ω and series connected
20 µF capacitor.
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The AVM design is based on two sets of measured results. One data set is from Gunnar
Chauncey’s thesis in 2018 [1], which provides MMC1 and MMC2’s impedance, measured from
both CHIL testing and hardware testing. Another data set is from CHIL test results, which provides
time domain voltage step and current step transients. Both the data sets are used in the same model
with the same control. The objectives of the AVM is to match its impedance and then verify the
time domain transient.

Fig. 5: MMC back to back testbed configuration.

3.2 Impedance shaping for current control mode MMC
The AVM in current control mode is shown in Fig. 6. KPWM is the MMC plant gain, which is
0.5NVcell for the dc modulation. Rd is the reactive damping coefficient. The current controller
Gci = Kpi + Kii

s
. In the current control mode, the dc-link voltage is considered constant since the

voltage loop is typically slower than the inner current loop and ideally ZMMC1 is large enough.
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Fig. 6: AVM at current control mode.
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Fig. 7: Current control mode MMC impedance from test [1].

Fig. 8: Current control mode MMC impedance measurement from AVM.
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Fig. 7 provides the current control mode MMC impedance calculation from previous test.
Three key information can be observed from the impedance measurement. Impedance shaping
can be implemented by changing parameters Kpi +Rd and Kii.

(1) The magnitude reduces by -20 dB/dec with the frequency at low frequencies, which means
there is no voltage feed forward control in the current loop. The reference voltage is added to the
current controller output instead, as shown in Fig. 6. If there is a voltage feed forward control, the
attenuation will be -40 dB/dec.

(2) The impedance lower than 1 kHz is given by (3), which is similar to a RLC in series circuit.

Z =
vdc
idc

= sL+Kpi +Rd +
Kii

s
(3)

The impedance zeros are derived in (4), and the magnitude is in (5). When the control param-
eters Kp + Rd and Ki changes, the zeros changes from real numbers to imaginary numbers, and
the impedance shape changes in the frequency domain, as shown in Fig. 9. When ω2L = Kii, the
impedance magnitude is at its minimum value Kpi +Rd. Observed from the current control mode
MMC impedance from test Fig. 7, the two zeros are the same.

z1,2 =
−Kpi −Rd ±

√
(Kpi +Rd)

2 − 4LKii

2L
(4)

|ZMMC2(ω)| =
√

(Kpi +Rd)
2 + (ωL− Kii

ω
)
2

(5)

(3) The RC filter impact starts from 1 kHz, and the MMC2 impedance is provided by (6).
The frequency for the maximum magnitude can be derived from the impedance poles, which is√

Kii+
1
C

L
.

ZMMC2 =
vdc
i′dc

= (sL+Kpi +Rd +
Kii

s
)||(R +

1

Cs
) (6)

After the impedance shaping, the current controller parameters are designed, Kpi = 4, Rd = 1,
and Kii = 2960. For the MMC2 impedance measurement in the AVM, the B2B testbed was run at
5 kV, 200 A, and a 5% voltage disturbance is added in series with vMMC1. The measured current
control mode impedance for MMC2 is in Fig. 8. The impedance measurement from the AVM is
consistent with the test results.

3.3 Impedance shaping for voltage control mode MMC
The AVM in voltage control mode is shown in Fig. 10. The current feed forward through a low
pass filter is added in the voltage loop. The voltage controllerGcv = Kpv + Kiv

s
. Since the RC filter

impedance is much larger than the load MMC impedance ZMMC2, it is neglected in the voltage
control mode AVM impedance shaping. idc is considered the same as i′dc.
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Fig. 9: Current control mode MMC impedance shaping with different zeros.

The impedance of the voltage control mode MMC is shown in (7), where Gi = Gci

Gci+Ls+Rd
is

the closed current loop transfer function.

ZMMC1 =
ZMMC2

1 +GcvGiZMMC2

(7)

Observed from the current control mode MMC impedance from test Fig. 11, there are four
sections. Section (1) is -40 dB/sec at low frequency, which means that there is current feed for-
ward enabled. The attenuation would be -20 dB/sec if there is no current feed forward control.
Section (2) is the voltage controller performance, section (3) is the inner current loop controller,
and section (4) is the dc inductor impact. The voltage control mode MMC impedance shaping is
implemented based on each section’s design.

12

Approved, DCN# 43-6370-20

Distribution A. Approved for public release, distribution is unlimited.



Fig. 10: AVM at voltage control mode.
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Fig. 11: Voltage control mode MMC impedance from test [1].

Fig. 12: Voltage control mode MMC impedance measurement from AVM.
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For the MMC1 impedance measurement in the AVM, the B2B test is executed at 5 kV, 200 A,
and a 5% current disturbance is added in parallel with iMMC2. The measured voltage control mode
impedance for MMC1 is in Fig. 12. The impedance measurement from the AVM is consistent
with the test results up to 300 Hz. The higher frequency impedance shaping still needs further
investigation and improvement.

4 AVERAGE MODEL VERIFICATION AND VALIDATION

The Matlab/Simulink models are included with this report, and the model description document is
given by [3].

4.1 MMC current transient
The simulation result of the average model is compared against the measured result using control
hardware-in-the loop (CHIL) test. A comparison of the current step response example is shown in
Fig. 13, where the current changes from 0 to 200 A and the dc voltage is controlled to 5 kV by
MMC1. The peak time, overshoot, and settling time are measured and compared.

Fig. 13: Current control mode MMC current 0-200 A step response comparison (at 5 kV).

Batch CHIL experiments were performed to verify the AVM in the operation space. In the
CHIL experiments, DC current step response was measured with current reference range from 5
A to 200A, in 10 A interval. At each reference, the experiment was repeated 100 times. 11-points
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digital medium filter was applied to the recorded current waveform to eliminate the influence of
high frequency distortion on rise time measurement. The measured rise time from AVM and the
CHIL are shown in Fig. 14.The data points marked by the blue cross are CHIL results and the
data with green diamond marker are from AVM. The error of rise time between AVM results and
the mean value of 100 CHIL results at each current step is shown in Fig. 15. The average of the
absolution value of the error is 12%.

Fig. 14: Current transient comparison between AVM and CHIL.

Fig. 15: Percentage of error in rise time between CHIL and AVM.

16

Approved, DCN# 43-6370-20

Distribution A. Approved for public release, distribution is unlimited.



4.2 MMC voltage transient
The voltage step response example is shown in Fig. 16, where the voltage changes from 0 to 5 kV
and the dc current is 200 A controlled by MMC2. The voltage transient is a typical slope response
without any overshoot. So the rising time is selected to represent the characteristics and implement
the V&V.

Fig. 16: Voltage control mode MMC voltage 0-5 kV step response comparison (at 200 A).

Different cases are designed to verify the voltage transient with different initial voltage and
step voltage, which are listed in in Table 2. All 21 cases are implemented in both the AVM and the
CHIL at 50-200 dc current levels.

The voltage transient characteristics comparison between AVM and CHIL are shown in Fig. 17.
The testing cases in Table 2 were executed. The blue dotted line is the AVM simulation results,
which is the same at different dc currents. CHIL test results also have very similar results be-
tween different dc currents. The rising time matches well between the AVM and CHIL, where the
maximum error is below 20%, as shown in Fig. 17.

The voltage transient is a slope response, the rising time is characterized for the comparison.

• Rising time is independent from the dc current;

• Rising time changes linearly with the voltage step value. In average, the coefficient is
0.23 µs/V in AVM and 0.27 µs/V in CHIL;

• The AVM error is about 15% compared to CHIL results.
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Table 2: Voltage transient cases

Cases No. Initial voltage
(V)

Target
Voltage (V)

Voltage step
(V)

1 0 1000 1000
2 0 2000 2000
3 1000 2000 1000
4 0 3000 3000
5 1000 3000 2000
6 2000 3000 1000
7 0 4000 4000
8 1000 4000 3000
9 2000 4000 2000
10 3000 4000 1000
1 0 5000 5000
2 1000 5000 4000
3 2000 5000 3000
4 3000 5000 2000
5 4000 5000 1000
6 0 6000 6000
7 1000 6000 5000
8 2000 6000 4000
9 3000 6000 3000
10 4000 6000 2000
10 5000 6000 1000
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Fig. 17: Voltage transient comparison between AVM and CHIL.

4.3 MMC short circuit operation
The short circuit test configuration is shown in Fig. 18. MMC is running in voltage control mode
and open circuit. Results from the short circuit result at 5 kV is shown in Fig. 19.

Fig. 18: MMC short circuit test configuration.

For the validation, both AVM and CHIL are implemented for 1-5.5 kV short circuit operation.
The fault current peak, rising time, and falling time are characterized for the comparison, as shown
in Fig. 20. The errors for the fault current comparison are shown in Fig. 21. The blue dash line is
the overall error, which is the square root of the three aspects’ square sum.

For the AVM short circuit transient, the overall fault current error is the square root of the
square sum average of peak, rising time, and falling time errors.

• The fault current peak increases nearly linearly with the DC bus voltage. The error between
the AVM and CHIL is less than 4%.

• Rising time and falling time are relatively constant with different DC bus voltages. The error
between the AVM and CHIL is between 5%-40%.
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Fig. 19: Single MMC voltage control mode short circuit comparison (at 5 kV open circuit).

• AVM provides good results for 2-5 kV dc bus short circuit transient, where the overall error
is around 20%.
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Fig. 20: Short circuit comparison between AVM and CHIL.

Fig. 21: AVM short circuit operation errors.
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5 CONCLUSION

• For the current controlled MMC, AVM developed in this report is able to shape the impedance
up to 3 kHz.

• For the voltage controlled MMC, AVM developed in this report is able to shape the impedance
up to 300 Hz.

• For the current transient, the step response is decided by the current step magnitude and
independent from the initial current value and DC bus voltage. In the range of 10-200A, the
averaged absolute error in rise time is 12%.

• For the voltage transient, the slope response is independent from the initial voltage and the
DC current, and the rising time increases linearly with the step voltage magnitude. The AVM
is validated with about 15% error for 0-6 kV voltage step transient.

• For the DC bus short circuit operation, the fault current peak increases linearly with the DC
bus voltage. The overall fault current error is the square root of the square sum average of
peak, rising time, and falling time errors. AVM is validated for 2-5 kV dc bus short circuit
transient, where the peak current error is within 4% and the overall error is around 20%.

6 FUTURE WORK

During the model validation process, we discovered that when repeating a test at the exactly same
condition for multiple times the test results can show a distribution. Fig. 22 presents the statistical
CHIL results of the rise time from 2000 tests with 5A step and 50A step in back to back configu-
ration. The result with 50A step can fit into a normal distribution with relative standard deviation
of 6.6%. This result means 68%, or one σ, of data is within the 6.6% range of the mean value, and
99.7%, or 3σ, of data is within 20% range of the mean value. However, the test results from 5A
step presents a much larger deviation, which suggests that the rise time of this converter may not be
”modelable” at 5A. Similar phenomenon can also be fund in experiment results with a commercial
MMC, as shown in Fig. 23.
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Fig. 22: Statistic of measured rise time in CHIL.

Fig. 23: Statistic of measured rise time from experiments with two B2B 1.25MW MMCs.
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Therefore, there is a need to further investigate this phenomenon by:

• Developing standard test procedure to identify the subset of the operation space that can or
can not be modeled. Fig.24 presents an example of possible result from such study.

• Searching for suitable mathematical tools to quantify the degree of modelability.

• Developing design and control methods to increase the modelability of power converters.

Fig. 24: Example of a power converter modelability study
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A ATTACHED MATLAB MODEL LIST

• AVM for current control mode MMC: Run I.m, MMC AVM I.slx;

• AVM for voltage control mode MMC: Run V.m, MMC AVM V.slx;

• AVM for voltage control mode MMC short circuit: Run V SC.m, MMC AVM sc.slx.

25

Approved, DCN# 43-6370-20

Distribution A. Approved for public release, distribution is unlimited.


	Introduction
	MMC Switching Model Simplified by Average Model
	Switching model introduction
	Average model introduction
	Simulation results comparison between SWM and AVM

	Average Modeling by Impedance Shaping
	MMC back to back tests
	Impedance shaping for current control mode MMC
	Impedance shaping for voltage control mode MMC

	Average Model Verification and Validation
	MMC current transient
	MMC voltage transient
	MMC short circuit operation

	Conclusion
	Future Work
	References
	Attached Matlab Model list



